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Abstract KCNH2 encodes the Kv11.1 channel, which

conducts the rapidly activating delayed rectifier K? current

(IKr) in the heart. KCNH2 mutations cause type 2 long

QT syndrome (LQT2), which increases the risk for life-

threatening ventricular arrhythmias. LQT2 mutations are

predicted to prolong the cardiac action potential (AP) by

reducing IKr during repolarization. Kv11.1 contains several

conserved basic amino acids in the fourth transmembrane

segment (S4) of the voltage sensor that are important for

normal channel trafficking and gating. This study sought to

determine the mechanism(s) by which LQT2 mutations at

conserved arginine residues in S4 (R531Q, R531W or

R534L) alter Kv11.1 function. Western blot analyses

of HEK293 cells transiently expressing R531Q, R531W

or R534L suggested that only R534L inhibited Kv11.1

trafficking. Voltage-clamping experiments showed that

R531Q or R531W dramatically altered Kv11.1 current

(IKv11.1) activation, inactivation, recovery from inactivation

and deactivation. Coexpression of wild type (to mimic the

patients’ genotypes) mostly corrected the changes in IKv11.1

activation and inactivation, but deactivation kinetics were

still faster. Computational simulations using a human

ventricular AP model showed that accelerating deactiva-

tion rates was sufficient to prolong the AP, but these effects

were minimal compared to simply reducing IKr. These are

the first data to demonstrate that coexpressing wild type

can correct activation and inactivation dysfunction caused

by mutations at a critical voltage-sensing residue in

Kv11.1. We conclude that some Kv11.1 mutations might

accelerate deactivation to cause LQT2 but that the ven-

tricular AP duration is much more sensitive to mutations

that decrease IKr. This likely explains why most LQT2

mutations are nonsense or trafficking-deficient.
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Introduction

KCNH2 encodes the Kv11.1 voltage-gated K? channel

a-subunit that underlies the rapidly activating delayed

rectifier K? current (IKr) in the heart (Sanguinetti et al.

1995; Trudeau et al. 1995). Mutations in KCNH2 cause

type 2 long QT syndrome (LQT2), an inherited disorder of

cardiac excitability (Curran et al. 1995; Sanguinetti et al.

1995). LQT2 mutations cause a loss-of-function in IKr to

prolong ventricular action potential (AP) duration and

increase the risk for life-threatening ventricular arrhythmias

(Delisle et al. 2004; Sanguinetti et al. 1996; Sanguinetti and

Tristani-Firouzi 2006).

Loss-of-function LQT2 mutations can decrease IKr by

reducing channel number at the cell surface membrane,

decreasing single-channel conductance and/or altering the

open probability. Most commonly, LQT2 is caused by

mutations that decrease channel number at the cell surface

membrane. About 40 % of LQT2 mutations are radical

mutations (nonsense, truncations, splice site or deletion)

that decrease Kv11.1 synthesis, and the remaining 60 %
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are missense mutations that alter a single amino acid res-

idue (Kapa et al. 2009). LQT2 missense mutations were

originally thought to cause long QT syndrome by primarily

affecting Kv11.1 deactivation gating; however, more

recent studies using mammalian expression systems show

that up to 90 % of LQT2 missense mutations decrease the

intracellular transport (trafficking) of Kv11.1 to the cell

surface membrane (Anderson et al. 2006; Chen et al. 1999;

Furutani et al. 1999; Nakajima et al. 1998, 1999; Sangui-

netti et al. 1996; Zhou et al. 1998a, 1999).

Kv11.1 contains six transmembrane segments (S1–S6),

where S1–S4 form the voltage sensor and S5–S6 comprise

the pore domain. S4 contains several highly conserved

arginine residues that are important for normal Kv11.1

gating (Papazian et al. 1991; Schulteis et al. 1998; Tiwari-

Woodruff et al. 2000). R531 plays a pivotal role in Kv11.1

gating because it is responsible for the normal transfer of

Kv11.1 gating charge and it couples with all of the con-

served acidic residues in the voltage-sensor domain.

Studies show that engineered amino acid substitutions at

arginine R531 alter Kv11.1 current (IKv11.1) activation,

inactivation and deactivation (Piper et al. 2005, 2008;

Subbiah et al. 2004, 2005; Zhang et al. 2004, 2005). Thus

far, two LQT2 mutations that alter R531 (R531Q and

R531W) and another conserved arginine at R534 (R534L

and R534C) have been identified (Kapa et al. 2009;

Nakajima et al. 1999; Napolitano et al. 2005; Splawski

et al. 2000). The purpose of this study was to determine

whether these mutations negatively affect the gating of

wild-type Kv11.1 (WT) to cause LQT2.

Materials and Methods

Mutagenesis, Tissue Culture and Transfection

The appropriate nucleotide changes of the LQT2 mutations

R531Q, R531W and R534L were engineered in WT cDNA

cloned in the pcDNA3 vector using the QuickChange Site

Directed Mutagenesis Kit (Agilent Technologies, Santa

Clara, CA). The integrity of all the constructs was verified

by DNA sequencing (AGTC, University of Kentucky,

Lexington, KY). Human embryonic kidney 293 (HEK293)

cells were cultured at 37 �C (5 % CO2) in MEM supple-

mented with 10 % fetal bovine serum (Invitrogen, Carlsbad,

CA). Cells were transfected using Superfect (Qiagen,

Valencia, CA) with WT, R531Q, R531W or R534L plas-

mid DNA (3 lg). For coexpression studies, cells were

transfected with equal amounts of WT and mutant Kv11.1

plasmid DNA (1.5 lg each). For electrophysiological

studies, cells were also transfected with enhanced green

fluorescent protein (GFP) cDNA subcloned in pKR5

(0.3 lg). GFP-positive cells were analyzed using Western

blot or the whole-cell patch-clamp technique 48–72 h after

transfection.

Western Blot

Cells for Western blotting were harvested with lysis buffer as

previously described (Zhou et al. 1998a). Equal amounts

of total protein were electrophoresed on a 6.5–7.5 %

SDS-polyacrylamide gel, transferred electrophoretically to

nitrocellulose and probed with the anti-Kv11.1 (Santa Cruz

Biotechnologies, Santa Cruz, CA) and anti-Na?/K?-ATPase

(Abcam, Cambridge, MA). Protein concentration was mea-

sured using the Bio-Rad DC Protein Assay (Bio-Rad,

Hercules, CA). For each experiment, protein standards were

generated from 2 mg/ml albumin stock by serially diluting

BSA stock in 1 % NP-40 buffer. A standard concentration–

absorbance curve was generated, and we calculated the lysate

sample concentrations from the resulting linear regression.

The immunoblots were also probed with a control (anti-Na?/

K?-ATPase) for the loading and transfer of the protein, which

allows for a better comparison between lanes when the loading

and transfer might not be uniform (see Fig. 2b, lane 2). Anti-

Kv11.1 and anti-Na?/K?-ATPase were detected using

Odyssey goat anti-rabbit (LI-COR Biosciences, Lincoln, NE)

and Odyssey donkey anti-mouse (LI-COR Biosciences),

respectively. The LI-COR Odyssey infrared imaging system

was used to image and quantify the immunolabeling.

Electrophysiology

Functional analyses were done using a standard whole-cell

patch-clamp technique on GFP-positive cells similar to

that previously described (Anson et al. 2004; Zhou et al.

1998b). The external solution contained (in mM) 137

NaCl, 4 KCl, 1.8 CaCl2, 1 MgCl2, 10 glucose and 10

HEPES (pH 7.4 with NaOH). An internal pipette solution

contained (in mM) 130 KCl, 1 MgCl2, 5 EGTA, 5 MgATP

and 10 HEPES (pH 7.2 with KOH). An Axopatch-200B

patch-clamp amplifier (Axon Instruments, Union City, CA)

was used to measure membrane currents and cell capaci-

tance. The pipette resistances were 1–2 MX, and series

resistance was compensated up to 95 %. pCLAMP 10

software (Axon Instruments) was used to generate the

voltage protocols, to acquire current signals and for data

analyses. Origin 7.0 (Microcal, Northhampton, MA) was

used for performing Boltzmann curve fitting to the current–

voltage (I–V) relations and for generating graphs. The data

were fit with the Boltzmann equation

I ¼ ðIMIN � IMAXÞ= 1þ e V�V1=2ð Þ=k
� �

þ IMAX

h i

where IMIN is the minimally activated current, IMAX is the

maximally activated current, V� is the midpoint potential
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for half-maximal activation and k is the slope factor. The

holding potential was -80 mV, and the dashed line in the

figures indicates zero current.

Computational Modeling

The O’Hara–Virág–Varró–Rudy (OVVR) computational

model for an undiseased human cardiac ventricular AP was

used to simulate the effect that accelerating IKr deactivation

kinetics has on the time to 90 % ventricular AP repolari-

zation (APD90) (O’Hara et al. 2011). We also compared

this to decreasing the relative amplitude of IKr to mimic

trafficking/permeation or synthesis defects.

Statistics

Data are reported as the mean – standard error (SE). A

one-way ANOVA was used to determine if there was dif-

ference among the groups, and post hoc analyses using the

Dunnett’s test were performed to see which group(s) dif-

fered compared to WT. Significance was determined at the

p \ 0.05 level.

Results

Kv11.1 contains several highly conserved basic residues

that are regularly spaced on the S4 and important for

normal gating (Fig. 1) (Piper et al. 2005; Subbiah et al.

2004; Zhang et al. 2004). At least four different LQT2

missense mutations that alter two of these basic residues

have been identified (R531Q, R531W, R534L and R534C)

(Kapa et al. 2009; Nakajima et al. 1999; Napolitano et al.

2005; Splawski et al. 2000). R531Q, R531W and R534C

have been shown to alter Kv11.1 gating when expressed as

homomeric channels in Xenopus oocytes; however, sub-

sequent studies showed that R534C does not traffic in

mammalian cells cultured at physiological temperatures

(Anderson et al. 2006; Nakajima et al. 1999; Rossenbacker

et al. 2005; Subbiah et al. 2004). We tested whether

R531Q, R531W or R534L traffic in HEK293 cells cultured

at 37 �C. Kv11.1 is cotranslationally modified in the

endoplasmic reticulum (ER) at N598 by the attachment of

N-linked core glycans to generate a 135-kDa immature

glycoprotein, and the glycan moiety undergoes further

posttranslational glycosylation in the Golgi apparatus to

generate the terminally glycosylated 155-kDa mature

Kv11.1 a-subunit (Zhou et al. 1998b). Trafficking-deficient

LQT2 mutations can be identified using Western blot

analyses because they decrease the relative amount of

155-kDa mature Kv11.1 (mature Kv11.1/total Kv11.1)

(Smith et al. 2011; Walker et al. 2010; Zhou et al. 1998a).

Based on Western blot analyses, R531Q and R531W

appeared to traffic normally, whereas R534L did not

(Fig. 2a, b); and coexpressing WT to mimic the patients’

genotypes did not facilitate or rescue R534L terminal

glycosylation (Fig. 2a). These data suggest that R534L

negatively affected the trafficking of WT.

Using the whole-cell patch-clamp technique, we next

determined the effect that R531Q, R531W or R534L had

on IKv11.1 by applying step-like pulses from -80 to 50 or

100 mV in 10-mV increments for 5 s, followed by a ‘‘tail’’

pulse to -50 mV for 5 s (Fig. 2c). The peak IKv11.1 mea-

sured during the tail pulse was plotted as a function of the

step-pulse potential, and the data were fit with a Boltzmann

function to calculate the mean IMAX, V� and k (Fig. 2d).

Compared to cells expressing WT, cells expressing R531Q

or R531W dramatically shifted the V� more positive and

increased k (Table 1). Cells expressing R534L showed a

large reduction in IMAX and a negative shift in V�
(Table 1). Surprisingly, coexpressing WT mostly corrected

the changes in IKv11.1 gating. Only k was still increased in

cells coexpressing WT and R531W (Table 1). We con-

clude that R531Q and R531W minimally alter IKv11.1

activation in cells coexpressing WT.

The biochemical and functional phenotype of R534L is

consistent with it being a trafficking-deficient LQT2

mutation (Anderson et al. 2006; Ficker et al. 2002; Zhou

et al. 1998a, 1999). Culturing cells in the class III antiar-

rhythmic E-4031 increases the trafficking and functional

expression for most trafficking-deficient LQT2 mutations

(Anderson et al. 2006; Ficker et al. 2002; Zhou et al. 1999).

E-4031 is postulated to act as a ‘‘pharmacological chap-

erone’’ by binding in the Kv11.1 pore (Ficker et al. 2002;

Loo and Clarke 1997; Zhou et al. 1999). Pharmacological

correction of trafficking-deficient LQT2 mutations can be

Fig. 1 LQT2 mutations at R531 or R534 disrupt conserved arginine

residues in the Kv11.1 S4. Amino acid residue sequence alignments

for the S4 of Kv11.1 (NP_000229.1), Kv1.1 (NP_000208.2), Kv2.1

(NP_004966), Kv3.1 (NP_001106212), Kv4.1 (NP_004970), Kv5.1

(NP_002227), Kv6.1 (NP_002228), Kv7.1 (NP_000209), Kv8.1

(NP_055194.1) and Kv9.1 (NP_002242.2). The highly conserved

basic amino acid residues are shaded gray
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visualized using Western blot analyses because it increases

the relative amount of mature Kv11.1. Using Western blot

analyses, we found that culturing cells expressing R534L in

E-4031 increased the relative amount of mature Kv11.1

(Fig. 3a, b). Moreover, we found that culturing cells in

E-4031 increased IKv11.1 after drug washout (Fig. 3c, d).
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Fig. 2 R531Q and R531W primarily alter IKv11.1 gating. a Representa-

tive immunoblot analysis of lysates isolated from cells expressing WT,

R531Q or WT and R531Q (left); WT, R531W or WT and R531W

(middle); and WT, R534L or WT and R534L (right). The immunoblots

were probed with anti-Kv11.1 and anti-Na?/K?-ATPase as a loading/

transfer control. All images are from the same immunoblot and were

cropped for presentation purposes. b The percent of mature Kv11.1

(mature/total Kv11.1) based on immunoblot analyses for each set of

experiments is plotted (n = 4–5, *p \ 0.05). Each set of probed samples

is from the same blot, and the intensity and brightness of the images were

not altered. c Representative families of currents measured from cells

transiently expressing WT, R531Q, R531W, R534L, WT and R531Q,

WT and R531W or WT and R534L using the voltage protocol shown.

dLeftI–V relations show the mean peak IKv11.1 measured during the tail

pulse plotted as a function of the step pulse from cells expressing WT

(gray squares), R531Q (open circles), R531W (black triangles) or

R534L (open diamonds). RightI–V relations show the mean peak IKv11.1

measured during the tail pulse plotted as a function of the step-pulse

potential from cells expressing WT (gray squares), WT and R531Q (open
circles), WT and R531W (black triangles) or WT and R534L (open
diamonds). Individual data were fit using a Boltzmann equation (solid
line) to calculate the mean IMAX, V� and k (Table 1)
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These data suggest that R534L is a trafficking-deficient

LQT2 mutation that undergoes pharmacological correction

with E-4031.

Since R534L appeared to primarily reduce IKv11.1 by

inhibiting trafficking, we focused the rest of our analyses

on R531Q and R531W. We next determined whether

R531Q or R531W altered IKv11.1 inactivation. We mea-

sured the development of inactivation by depolarizing cells

to 50 mV for 1.5 s, hyperpolarizing to -100 mV for 10 ms

to reopen most channels and then applying a test pulse

from 0 to 90 mV in 10-mV increments for 3 s (Fig. 4a).

The IKv11.1 decay measured during the test pulse was

described as a single-exponential process and used to

calculate a time constant for the development of IKv11.1

inactivation (sinact) (Fig. 4b). Compared to cells expressing

WT, cells expressing R531Q or R531W showed a positive

or depolarizing shift in sinact. Coexpressing WT partially

corrected this for R531W but not R531Q. The rate for the

recovery of IKv11.1 inactivation was also measured by

prepulsing cells to 50 mV for 5 s, followed by a test pulse

from -120 to -30 mV for 1.5 s (Fig. 4c). To calculate the

time constant for recovery from IKv11.1 inactivation (srec),

the rising phase of IKv11.1 measured during the test pulse

was described as a single-exponential process, and these

rates were plotted as a function of the test-pulse potential

(Fig. 4d). Cells expressing R531Q or R531W accelerated

recovery of Kv11.1 inactivation kinetics by causing a

positive shift in the voltage dependence for srec; however,

coexpression of WT with either R531Q or R531W almost

completely corrected this. We conclude that R531Q and

R531W slightly slow the development of IKv11.1 inactiva-

tion in cells coexpressing WT.

Acceleration of Kv11.1 deactivation kinetics has been

implicated as a cause for LQT2 (Berecki et al. 2005; Chen

et al. 1999). To test if R531Q or R531W accelerated IKv11.1

deactivation, IKv11.1 deactivation rates were measured from

cells by applying a 2-s prepulse to 50 mV, followed by a

test pulse from -120 to -30 mV for 10 s in 10-mV

increments (Fig. 5a). Deactivation rates were calculated by

describing the decay of IKv11.1 measured during the test

pulse as a double-exponential process with a fast and a

slow time component (sfast and sslow), and the time con-

stants were plotted as a function of the test-pulse potential

(Figs. 5b, 5c). Additionally, the relative percent amplitude

of the slow component was plotted as a function of

the test-pulse potential (Fig. 5d). Compared to cells express-

ing WT, cells expressing R531Q and R531W showed

*10-fold faster sfast and sslow for many of the test-pulse

potentials. Coexpressing WT and R531Q or R531W only

partially corrected the faster deactivation rates, but sfast and

sslow were still severalfold faster at most test-pulse potentials

[-80 mV. Compared to WT, the relative amplitude of the

slow component was voltage-independent in cells express-

ing R531Q or R531W; however, this was completely cor-

rected by coexpression of WT.

Table 1 Mean parameters calculated from the Boltzmann fits to

IKv11.1 measured from cells expressing WT, R531Q, R531W, R534L,

WT and R531Q, WT and R531W, WT and R534L

Expressed IMAX V� k n

WT 62 ± 10 –14 ± 3 6.2 ± 0.2 19

R531Q 42 ± 15 32 ± 2* 9.4 ± 1* 9

R531W 33 ± 6 12 ± 2* 9.8 ± 0.7* 13

R534L 7 ± 2* –28 ± 1 4.6 ± 0.4 11

WT and R531Q 48 ± 6 –3 ± 3 10.2 ± 0.6* 18

WT and R531W 43 ± 11 –4 ± 2 7.2 ± 0.7 12

WT and R534L 23 ± 6* –18 ± 2 6.3 ± 0.3 10

*p \ 0.05 compared to WT
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Fig. 3 R534L is a trafficking-deficient LQT2 mutation that under-

goes pharmacological correction with E-4031. a Representative

immunoblot analysis of lysates isolated from cells expressing

R534L in control conditions or cultured in E-4031 (E4) (10 lM for

48 h). Immunoblots were probed with anti-Kv11.1 and anti-Na?/

K?-ATPase as a loading/transfer control. All images are from the

same immunoblot and were cropped for presentation purposes. b The

percent of mature Kv11.1 (mature/total Kv11.1) based on immunoblot

analyses is plotted (n = 4, *p \ 0.05). c Representative current traces

measured from cells transiently expressing R534L in control condi-

tions or cultured with E-4031. Cells were depolarized to 50 mV for

3 s so as to maximally activate R534L and then hyperpolarized to

-120 mV for 3 s. Traces show the inward current that was measured

at the very beginning of the tail pulse to -120 mV. d The

corresponding mean peak tail current is plotted (n = 7–10 cells,

*p \ 0.05)
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R531Q and R531W mainly affect IKv11.1 in cells coex-

pressing WT by slowing inactivation and accelerating

deactivation kinetics. Slower inactivation kinetics is not

expected to cause a loss of IKr function, but faster deacti-

vation kinetics have been associated with the LQT2

mutations R56Q and DY475 (Berecki et al. 2005; Chen

et al. 1999; Lin et al. 2010; Nakajima et al. 1999). We

tested the impact that accelerating IKr deactivation kinetics

10-fold has on the ventricular APD90 using the OVVR

computational model of a human AP pulsed at 1 Hz.
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slow the development of

inactivation. a Representative

families of currents measured

from cells transiently expressing

WT, R531Q, R531W, WT and

R531Q or WT and R531W

using the voltage protocol

shown. The sinact was calculated

by describing the decay of

IKv11.1 measured during the test

pulse as a single exponential.

b Left Mean sinact calculated

from cells expressing WT (gray
squares), R531Q (open circles)

or R531W (black triangles)

plotted as a function of the test

pulse. Right Mean sinact

calculated from cells expressing

WT (gray squares), WT and

R531Q (open circles) or WT

and R531W (black triangles)

plotted as a function of the test

pulse (n C 7). c Representative

families of currents measured

from cells expressing WT,

R531Q, R531W, WT and

R531Q or WT and R531W

using the voltage protocol

shown. The srec was calculated

by describing the rising phase of

IKv11.1 measured during the test

pulse as a single exponential.

d Left Mean srec calculated from

cells expressing WT (gray
squares), R531Q (open circles)

or R531W (black triangles)

plotted as a function of the test

pulse. Right Mean sinact

calculated from cells expressing

WT (gray squares), WT and

R531Q (open circles) or WT

and R531W (black triangles)

plotted as a function of the test

pulse (n C 7). Compared to

WT, p \ 0.05 for R531Q

(asterisks) or R531W (hash)

360 C. M. McBride et al.: LQT2 Syndrome and KCNH2 Mutations

123



Figure 6a shows the ventricular AP waveforms and the

corresponding IKr for a control simulation or a simulation

with 10-fold accelerated IKr deactivation kinetics. The

faster deactivation kinetics prolonged the ventricular

APD90 waveform by *10 %. In the control simulation, IKr

is present during the upstroke and persists for the entire

duration of the AP waveform. Simulations incorporating

faster deactivation kinetics caused a loss of IKr during the

initial upstroke, and it did not persist throughout the AP

waveform (Fig. 6a). This suggests that IKr with faster

deactivation kinetics completely deactivates during the

repolarization and diastolic phase.

The vast majority of LQT2 nonsense mutations and

missense mutations are expected to simply decrease IKr by

inhibiting the number of channels at the cell surface

membrane. Indeed, only two other LQT2 mutations, R56Q

and DY475, are expected to cause LQT2 by accelerating

deactivation kinetics. We compared the effect that either

faster deactivation kinetics or decreasing IKr had on the

APD90 (Fig. 6b). The modeling suggested that *100-fold

acceleration in IKr deactivation kinetics was needed to

mimic happloinsufficiency (*50 % reduction in IKr). In

other words, the APD90 is much more sensitive to changes

in the amplitude of IKr than deactivation kinetics. This
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R531W (black triangles). Right
Mean sfast (b) and sslow (c) and
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likely explains why most causative LQT2 missense muta-

tions are predicted to decrease the trafficking of Kv11.1

rather than accelerate deactivation kinetics (Fig. 6c)

(Anderson et al. 2006; Ficker et al. 2002; Furutani et al.

1999; Gianulis and Trudeau 2011; Guo et al. 2012; Harley

et al. 2012; Rossenbacker et al. 2005; Zhou et al. 1998a,

1999).

Discussion

The purpose of this study was to understand the mecha-

nism(s) by which LQT2 mutations that disrupt conserved

arginine residues in the S4 cause LQT syndrome. Our data

suggest that homomeric R531Q and R531W channels

dramatically altered Kv11.1 gating but that R534L

decreased IKv11.1 by reducing Kv11.1 trafficking. Although

homomeric R531Q and R531W channels showed dramatic

changes in IKv11.1 activation, inactivation and deactivation,

coexpression of WT normalized most of these changes.

However, accelerated IKv11.1 deactivation kinetics were

still observed in cells coexpressing WT and R531Q or

R531W, and our computational modeling suggested that

this functional phenotype was sufficient to prolong the

ventricular AP. Nevertheless, it should be noted that the AP

duration was much more sensitive in decreasing IKr rather

than accelerating deactivation kinetics. This latter finding

likely explains why a vast majority of LQT2 radical and

missense mutations decrease the number of functional

channels in the cell surface membrane.

Interestingly, coexpression of WT seems to largely

correct profound gating changes caused by several differ-

ent LQT2 mutations. Similar effects are seen with the

LQT2 mutations that localize to the N-terminal Per-

Arnt-Sim (NPAS) domain. For example, Rossenbacker and

colleagues (2005) showed that cells expressing the LQT2

mutation K28E alone decreased Kv11.1 trafficking and

accelerated deactivation rates but that cells coexpressing

WT and K28E showed only decreased trafficking (and

normal deactivation rates). Similar results are seen with

other LQT2 mutations in the NPAS domain (Chen et al.

1999). The NPAS domain interacts with S4–S5 to slow

Kv11.1 deactivation gating, and studies suggest that LQT2

mutations in the NPAS domain accelerate IKv11.1 deacti-

vation by disrupting this interaction. Indeed, recent studies

show that simply coexpressing the WT NPAS domain

alone was sufficient to correct the dysfunctional deactiva-

tion gating caused by NPAS LQT2 mutations. We suspect

that coexpression of WT and NPAS LQT2 mutations might

generate heteromeric channels where the NPAS domain of

the WT subunit can substitute for the mutant NPAS domain

of the LQT2 subunit to normalize deactivation. Our data

now show that coexpression of WT can also correct the

activation, inactivation and, to a certain extent, deactiva-

tion dysfunction caused by R531 mutations. This was

unexpected because R531 is a critical residue involved in

Kv11.1 voltage sensing and its effects on homomeric

channels is very pronounced. We suggest that the gating of
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Kv11.1 channels is largely cooperative and that the pres-

ence of WT subunits can also mostly correct the gating

dysfunction caused by LQT2 mutations outside the NPAS

domain.

There are several limitations to this study. The number

of LQT2 patients with these mutations is limited, and

additional family-specific factors may contribute to their

clinical phenotypes. These data were obtained in a widely

used heterologous overexpression system, and not all of

the possible Kv11.1 isoforms were studied. Although we

transfected equal amounts of WT and mutant Kv11.1

cDNA, we do not know the exact ratio of the WT and

mutant subunits. It is possible that the IKv11.1 in the

cotransfection mostly reflected WT channels. However, we

suspect this is unlikely since R531Q or R531W readily

formed functional channels in cells that do not express WT.

In summary, this study suggests LQT2 mutations that

disrupt a critical residue in the voltage sensing of Kv11.1

dramatically alter gating, but this is largely normalized by

coexpression of WT. Although these mutations sufficiently

speed the deactivation kinetics to predict a prolongation in the

ventricular AP, we found that the AP duration was much more

sensitive to decreases in IKr. These data likely help to explain

why the vast majority of LQT2 mutations do not appear to

cause gating dysfunction but rather decrease the number of

functional Kv11.1 channels in the cell surface membrane.
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